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The general periodic boundary condition for the lattice Boltzmann method has been modified to incorporate
the pressure difference for fully developed periodic flows. The results demonstrated that, unlike other existing
pressure boundary treatments, the proposed procedure/treatment does not generate nonphysical inlet and outlet
flow disturbances while preserving the system periodicity. This method is readily applicable to a range of
lattice Boltzmann simulations for systems with periodic electric potential and temperature fields.
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The lattice Boltzmann method �LBM� has experienced
rapid development in recent years �1–4� to simulate various
hydrodynamic systems. Along with the LBM development,
tremendous efforts have been devoted to develop accurate
and efficient boundary schemes for different situations
�5–18�. As for other simulation techniques, however, bound-
ary conditions �BCs� play a crucial role for meaningful LBM
simulations. Due to the particle-based nature of LBM, BCs
are implemented by specifying the unknown particle distri-
bution functions entering the simulation domain, instead of
the macroscopic fluid properties, such as velocity and pres-
sure. This imposes a restriction on the LBM to simulate
meaningful hydrodynamic systems, where the pressure gra-
dient is commonly utilized to induce fluid motions.

Dupuis �18� examined the different LBM methods of ap-
plying a pressure difference to a simple Poiseuille flow, and
found that they usually produced unphysical and largely false
inlet/outlet velocity/pressure disturbance. Such a phenom-
enon was also reported elsewhere �19,20�. Among these
studies, the only method not suffering from this defect is the
one that replaces the pressure gradient by an equivalent body
force which is, however, only valid for channels with a uni-
form cross-sectional area. On the other hand, Zou and He
�10� derived the pressure and velocity BCs by assuming a
bounce-back mechanism for nonequilibrium distributions on
the boundary nodes. For the inlet/outlet boundary, they as-
sumed the transverse velocities to be zero, which is, in gen-
eral, not valid for most situations. Other schemes have also
been proposed to impose a pressure difference across the
inlet and outlet of the simulation domain �6,9�. However,
system periodicity was not properly incorporated.

Figure 1 illustrates the schematic of a duct flow with pe-
riodic rectangular disturbances. Many experimental studies
have revealed that the entrance lengths of fluid flow in such
streamwise-periodic systems are short and the flow can often
become fully developed in three to five periods �21�. Hence,
the flow velocity u and pressure P in such systems exhibit
periodic behaviors as follows �22�:

u�x,y� = u�x + nL,y� , P�x,y� = P�x + nL,y� + n�L , �1�

where n can be any integer, L is the period along the x
direction for periodicity, and � is a constant representing the
overall pressure gradient along the periodic direction. A simi-
lar relation for temperature also exists �22�. In this paper, a
LBM pressure boundary treatment for fully developed peri-
odic flows is developed which is applicable to a wide range
of systems with geometric periodicity, such as corrugated
ducts �22,23�, compact heat exchangers �24�, filtration �25�,
fuel cells �26�, and microchannels �27,28�. In order to dem-
onstrate the validity of the BCs, simulations will also be
presented for flows in uniform and nonuniform channels.

For the purpose of completeness, a brief description of
LBM is given in this section. Generally, after discretization
in time and space, the lattice Boltzmann equation with a
Bhatnagar–Gross–Krook collision term can be written as �3�

f i�x + ei,t + 1� − f i�x,t� = − �1/���f i�x,t� − f i
eq�x,t�� , �2�

where the distribution function f i�x , t� denotes fluid particle
population moving in the lattice direction ei at a lattice site x
and a time step t; � is the collision time, and f i

eq�x , t� is a
prescribed equilibrium distribution function of fluid density �
and velocity u, which are defined, respectively, as follows

� = �
i

f i, �u = �
i

f iei. �3�

There are several lattice structures available �18�. In this
work, we have employed a square two-dimensional nine-
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FIG. 1. A schematic of a duct with periodic rectangular
disturbances.
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velocity �D2Q9� model for its simplicity. The nine discrete
lattice velocities are given by

e0 = 0 ,

ei = „cos��i − 1�/2��,sin��i − 1�/2��…, i = 1 − 4, �4�

ei = �2„cos��2i − 9�/4��,sin��2i − 9�/4��…, i = 5 − 8;

and the equilibrium distribution functions can be expressed
as

f i
eq = ��i�1 + 3ei · u + 9

2 �ei · u�2 − 3
2u2� , �5�

with �0=4/9, �1−4=1/9, and �5−8=1/36. Macroscopic con-
tinuity and momentum �Navier–Stokes� equations can be ob-
tained from the microdynamics defined above through the
Chapman–Enskog procedure �2,3�. The fluid pressure P and
viscosity � in the resulting Navier–Stokes equation are de-
fined, respectively, as

P = cs
2�, � = cs

2�2� − 1�/2, �6�

where the sound speed cs is given by cs
2=1/3 for a D2Q9

lattice model.
The general periodic BCs are commonly employed in

particle-based simulations, such as molecular dynamics,
Monte Carlo simulations, LBM, and dissipative particle dy-
namics. Under such treatment, a particle leaving the domain
across a boundary will enter from the opposite side. There-
fore, the simulated system will consist of identical domains.
However, in the fully developed periodic flows described
above, there is an overall pressure difference between the
domain and its adjacent image domain; and hence modifica-
tions of the original periodic BCs are necessary to account
for such a difference.

The description of flow periodicity from Eq. �1� can be
rewritten as the following BCs for an appropriately selected
simulation domain, which includes only one period of the
physical system:

u�x = 0,y� = u�x = L,y� , P�x = 0,y� = P�x = L,y� + �L .

�7�

Due to the relationships between the distribution f’s and
fluid properties u and � �Eq. �3�� at a lattice node, multiply-
ing the distribution f’s by a factor 	 will change the density
� to 	�, while the velocity remains unaffected. On the other
hand, the fluid pressure in the resulting Navier–Stokes equa-
tion �see Eq. �6�� is proportional to the density �i.e., P=cs

2��;
and thus the pressure gradient can be implemented as a cor-
responding density gradient �10,18�.

FIG. 2. Modification of the general periodic BC to account for
pressure difference between two adjacent domains.

FIG. 3. Density distributions
�upper panels� and axial velocity
ux profiles �lower panels� of 2D
�a� and 3D �b� channel flows. The
symbols are LBM results �� for
the pressure driven flow and 
 for
the body force driven flow�, and
the solid lines are from fluid me-
chanics theory �29,30�.
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Let us consider the distributions leaving the outlet bound-
ary after collision foutlet

out �normal filled arrows in Fig. 2�a��.
Their images f inlet

in in the upstream imaginary domain �sharp
filled arrows in Fig. 2�b�� should produce the same velocity
and density difference of �L /cs

2. These imaginary distribu-
tions f inlet

in will then propagate across the inlet boundary of
the simulation domain and arrive at the inlet nodes �sharp
filled arrows in Fig. 2�c��. Similar procedures can also be
applied to the distributions leaving the inlet boundary �f inlet

out

and foutlet
in , open arrows in Fig. 2�. In addition, a reference

pressure/density is necessary, and this is represented by set-
ting the average density of the column on the right of the
inlet nodes as �0+� /cs

2. Based on this description, the LBM
BC can be expressed mathematically as follows:

f inlet
in = foutlet

out �0 + �/cs
2

�̄outlet

, foutlet
in = f inlet

out �0 − �L/cs
2

�̄inlet

, �8�

where �̄inlet and �̄outlet are the density averages over the inlet
and outlet column, respectively.

To validate the proposed BC, pressure driven Poiseuille
flows in two-dimensional �2D� �width W=99� and three-
dimensional �3D� �width W=25 and height H=125� uniform
channels are simulated. We employed the D2Q9 lattice
model for 2D and D3Q19 �three-dimensional nineteen-
velocity� �1� for 3D simulations. The typical half-way
bounce-back BC for the solid surfaces was employed �1�
with an initial density distribution of �=1, �=1, and � /cs

2

=10−5. The density distributions along the channel axis ��,
upper panels� and velocity profiles across the channel ��,
lower panels� are displayed in Fig. 3. Linear fittings of the
density distributions �solid lines, upper panels in Fig. 3� pro-
duce a density gradient of 1
10−5, which is in agreement
with the simulation setup � /cs

2=10−5. Unlike those presented
in �18�, the density �pressure� gradient from this proposed
BC is uniform along the channel, and no inlet/outlet effects

are observed �upper panels in Fig. 3�. For comparison, LBM
results from the equivalent body force driven flows �
� and
analytical predictions �29,30� �solid lines� are also shown in
the lower panels in Fig. 3. The corresponding Reynolds num-
bers Re=ux,maxW /� are 14.6 for the 2D flow and 0.234 for
the 3D flow. In such uniform channels, the LBM results for
the pressure driven and the body force driven flows are iden-
tical and they both agree well with the theoretical predic-
tions.

In addition, to demonstrate that this modified periodic BC
represents system periodicity correctly, we simulated the sys-
tem shown in Fig. 1 by selecting the domains to include the
length of the duct as L and 2L. Figure 4 displays the density
contours �upper panels� and corresponding velocity fields
�lower panels�. No difference in the patterns obtained from
these two different domains can be found. For example, typi-
cal flow features are all captured, including the higher-
pressure regions upstream the disturbances, lower-pressure
regions downstream the disturbances, and vortexes near the
bottom of the disturbances. For regions above the rectangular
disturbances �y�60�, density decreases linearly along the
channel while all streamlines are roughly parallel, suggesting
that the effects of disturbances on the flow properties are
smaller.

A more quantitative comparison can be performed on the
density �pressure� and velocity profiles along the duct at
three transverse positions, y=20 �black rectangle�, 50 �blue
triangle�, and 70 �red circle�, and is plotted in Fig. 5. It can
be seen that the results from two different domains �symbols
for the 1L domain and solid lines for the 2L domain in Fig.
5� are nearly identical. Here, the Reynolds number Re
=ux,maxW /�=9.09. A LBM simulation of the equivalent body
force driven flow in the 2L domain has also been conducted,
and the velocities are shown as dashed lines in Figs. 5�b� and
5�c�. The body force here g=3.54
10−6 is obtained by
equalizing the total body force to the external force due to
the pressure difference across the domain inlet/outlet �31�. It

FIG. 4. �Color online� Density contours �upper panels� and flow fields �lower panels� obtained over L �a� and 2L �b� domains.
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should be noted that, according to such an approach, the
equivalent body force depends on the domain position. For
example, if we select the inlet at x=30 �see Fig. 4�, then g
=2.50
10−6. Such different body forces will definitely pro-
duce different flow fields, and this is not physically realistic.
Here, the velocities from body force g=3.54
10−6 are in
general larger than those from the original pressure gradient.
It was also found that, under the case of periodic distur-
bances, the transverse velocity is nonzero at both the inlet
and outlet �Fig. 5�c��. Thus, existing treatments, either by
replacing the pressure gradient with a body force or by Zou’s
nonequilibrium bounce-back mechanism �10�, are not appli-
cable to such pressure-driven flows in general periodic sys-
tems.

In summary, a modified periodic BC for LBM has been
developed for fully developed periodic flows. Simulations

show that system periodicity was well represented and no
inlet/outlet effect was observed. We have also compared our
pressure boundary treatment with the equivalent body force
driven flows and found that these two approaches agree with
each other only for uniform channels. Therefore, replacing a
pressure gradient with an equivalent body force is not appro-
priate for the general periodic systems. The proposed bound-
ary treatment is also better than other existing techniques in
term of inlet/outlet effects. By removing the inlet/outlet ef-
fects on velocity/density, our boundary treatment will also
improve the simulation stability. The described procedures
for periodic pressure boundaries can be readily extended to
temperature and electric fields situations.
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FIG. 5. �Color online� Profiles
of density difference �−�0 �a� and
velocity ux �b� and uy �c� along a
duct at three different transverse
positions �y=20 in black rect-
angle, 50 in blue triangle, and 70
in red circle� with domains con-
sisting L �symbols� and 2L �solid
lines�. The velocities of the
equivalent body force driven flow
in the 2L domain are also dis-
played �dashed lines� in �b� and
�c�. Note that there is no fluid den-
sity, and the velocities are zero in
the space occupied by the distur-
bances �19�x�40 and 119�x
�140; 0�y�30�.
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